Extensions 1→N→G→Q→1 with N=C3 and Q=C4×S32

Direct product G=N×Q with N=C3 and Q=C4×S32
dρLabelID
S32×C12484S3^2xC12432,648

Semidirect products G=N:Q with N=C3 and Q=C4×S32
extensionφ:Q→Aut NdρLabelID
C31(C4×S32) = S3×C6.D6φ: C4×S32/S3×Dic3C2 ⊆ Aut C3248+C3:1(C4xS3^2)432,595
C32(C4×S32) = Dic36S32φ: C4×S32/C6.D6C2 ⊆ Aut C3488-C3:2(C4xS3^2)432,596
C33(C4×S32) = C4×S3×C3⋊S3φ: C4×S32/S3×C12C2 ⊆ Aut C372C3:3(C4xS3^2)432,670
C34(C4×S32) = C4×C324D6φ: C4×S32/C4×C3⋊S3C2 ⊆ Aut C3484C3:4(C4xS3^2)432,690
C35(C4×S32) = S32×Dic3φ: C4×S32/C2×S32C2 ⊆ Aut C3488-C3:5(C4xS3^2)432,594

Non-split extensions G=N.Q with N=C3 and Q=C4×S32
extensionφ:Q→Aut NdρLabelID
C3.1(C4×S32) = C4×S3×D9φ: C4×S32/S3×C12C2 ⊆ Aut C3724C3.1(C4xS3^2)432,290
C3.2(C4×S32) = C4×C32⋊D6φ: C4×S32/C4×C3⋊S3C2 ⊆ Aut C3366C3.2(C4xS3^2)432,300

׿
×
𝔽